INAPSAC: A New Robust Inlier Identification Technique
نویسندگان
چکیده
Robust statistical methods were first adopted in computer vision to improve the performance of feature extraction algorithms at the bottom level of the vision hierarchy. These methods tolerate the presence of data points that do not obey the assumed model such points are typically called “outlier”. Recently, various robust statistical methods have been developed and applied to computer vision tasks. Random Sample Consensus (RANSAC) estimators are one of the widely applied to tackle such problems due to its simple implementation and robustness. There have been a number of recent efforts aimed at increasing the efficiency of the basic RANSAC algorithm. N Adjacent Points Sample Consensus (NAPSAC) is one of the RANSAC method used in computer vision task. In this paper a new algorithm is proposed which is the modified version of NAPSAC with 2-sphere method. The accuracy of the proposed algorithm has been studied through a simulation study along with the existing algorithms in the context of RANSAC techniques.
منابع مشابه
A New Inlier Identification Scheme for Robust Estimation Problems
Common goal of many computer vision and robotics algorithms is to extract geometric information from the sensory data. Due to noisy measurements and errors in matching or segmentation, the available data are often corrupted with outliers. In such instances robust estimation methods are employed for the problem of parametric model estimation. In the presence of a large fraction of outliers sampl...
متن کاملA Robust Strucutural Fingerprint Restoration
Fast and accurate ridge detection in fingerprints is essential to each AFIS (Automatic Fingerprint Identification System). Smudged furrows and cut ridges in the image of a finger print are major problems in any AFIS. This paper investigates a new online ridge detection method that reduces the complexity and costs associated with the fingerprint identification procedure. The noise in fingerprint...
متن کاملEvolutionary Optimization for Robust Epipolar-Geometry Estimation and Outlier Detection
In this paper, a robust technique based on a genetic algorithm is proposed for estimating two-view epipolar-geometry of uncalibrated perspective stereo images from putative correspondences containing a high percentage of outliers. The advantages of this technique are three-fold: (i) replacing random search with evolutionary search applying new strategies of encoding and guided sampling; (ii) ro...
متن کاملRobust Identification of Smart Foam Using Set Mem-bership Estimation in A Model Error Modeling Frame-work
The aim of this paper is robust identification of smart foam, as an electroacoustic transducer, considering unmodeled dynamics due to nonlinearities in behaviour at low frequencies and measurement noise at high frequencies as existent uncertainties. Set membership estimation combined with model error modelling technique is used where the approach is based on worst case scenario with unknown but...
متن کاملRobust Game-Theoretic Inlier Selection for Bundle Adjustment
Bundle Adjustment is a widely adopted self-calibration technique that allows to estimate scene structure and camera parameters at once. Typically this happens by iteratively minimizing the reprojection error between a set of 2D stereo correspondences and their predicted 3D positions. This optimization is almost invariantly carried out by means of the Levenberg-Marquardt algorithm, which is very...
متن کامل